US009229725B2

a2 United States Patent 10) Patent No.: US 9,229,725 B2
Mitran et al. 45) Date of Patent: Jan. 5, 2016
(54) SAFE CONDITIONAL-LOAD AND 6,536,037 BL* 3/2003 Guheen etal. 717/151

CONDITIONAL-STORE OPERATIONS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Marcel Mitran, Markham (CA); Visda
Vokhshoori, Toronto (CA)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/482,642

(22) Filed: Sep. 10, 2014
(65) Prior Publication Data
US 2015/0121049 A1l Apr. 30, 2015
(30) Foreign Application Priority Data
Oct. 31,2013 (CA) everiireereceneercecineenene 2831711
(51) Imt.ClL
GO6F 9/45 (2006.01)
GO6F 9/38 (2006.01)
GOG6F 9/46 (2006.01)
(52) US.CL
CPC GO6F 9/3861 (2013.01); GO6F 9/3804

(2013.01); GOG6F 9/46 (2013.01)
(58) Field of Classification Search
USPC 717/140-144, 158-160, 150-152
IPC oo GOGF 8/40,8/41, 8/53, 8/447
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,993,757 B2* 1/2006 Rajagopalan 717/160
7,051,322 B2* 5/2006 Rioux 717/143
7,240,343 B2* 7/2007 Ogasawara . .. T17/158
7,257,806 B1* 82007 Chenetal. 717/141
7,552,428 B2* 6/2009 Stoodley et al. .. 717/148
7,574,704 B2* 8/2009 Fulton et al. . T17/159
7,747,989 B1* 6/2010 Kissell 717/148
7,996,671 B2* 82011 Chhedaetal. ... 713/164
8,078,850 B2 12/2011 Kuesel et al.
(Continued)
OTHER PUBLICATIONS

Bronevetsky et al, “Compiler-Enhanced Incremental Checkpointing
for OpenMP Applications”, ACM, pp. 275-276, 2008.*

(Continued)

Primary Examiner — Anil Khatri
(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
Edward Choi

(57) ABSTRACT

One embodiment is a computer-implemented method for safe
conditional operation when storage access cannot be proven
safe. The method includes receiving a portion of source code
for a transaction by an enhanced compiler and. The portion of
source code received is analyzed, by the enhanced compiler,
to determine whether the portion of source code is a candidate
for transformation. Responsive to a determination that the
portion of source code analyzed by the enhanced compiler is
a candidate for transformation, the portion of the source code
analyzed is transformed, by a computer processor, to use a
conditional operation in a first portion of the transformed
code. The conditional operation uses hardware transaction
memory to invoke retry operations within hardware. A branch
is added, directed to an original code portion, in a second
portion of transformed code, where the branch is a recovery
portion containing the original code portion.

17 Claims, 7 Drawing Sheets

5,790,867 A * 8/1998 Schmidtetal. 717/155
6,427,234 B1* 7/2002 Chambers et al. 717/140
Enhanced compller
304
Code Code
analyzer transformer
imize:
308 oppmer

Compller generated code 312

Data processing system 200

Source code
302

Instruction set
310

Transactional memory support 314

Safe conditional aperation

sysiem
16

US 9,229,725 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,108,844 B2* 1/2012 Crutchfield etal. 717/149
8,136,102 B2* 3/2012 Papakipos etal. 717/140
8,180,986 B2 5/2012 Harris et al.

8,397,222 B2* 3/2013 Warrenccceen. 717/143

8,429,637 B2 * .. T17/159
. 717144

L 717/159

4/2013 Myles et al. .
8,438,551 B2* 5/2013 Tonkin et al.
8,458,684 B2* 6/2013 Eichenbergeretal.
8,615,745 B2* 12/2013 Blaineyetal. 717/140
8,726,251 B2* 5/2014 Kalogeropulos et ... 717/150
8,869,120 B2* 10/2014 Huucketal. 717/140

2011/0119446 Al 5/2011 Blumrich et al.

2011/0219208 Al 9/2011 Asaad et al.

2011/0307689 Al 12/2011 Chungetal.

OTHER PUBLICATIONS

Lee et al, “Enhanced Hot Spot Detection Heuristics for Embedded
Java Just-in-Time Compilers”, ACM, pp. 13-22, 2008.*

Denny et al, “Enhancing Syntax Error Messages Appears Ineffec-
tual”, ACM, pp. 273-278, 2014.*

Hoflehner et al, “Compiler Optimizations for Transaction Processing
Workloads on Itanium® Linux Systems” IEEE, pp. 1-10, 2004.*
Tilevich et al, “Program, Enhance Thyself!”—Demand-Driven Pat-
tern-Oriented Program Enhancement ACM, pp. 13-24, 2008.*
Wang et al, “Compiler-Managed Software-based Redundant Multi-
Threading for Transient Fault Detection”, IEEE, pp. 1-13, 2007.*
Anonymously; “Apparatus for Interleaving Execution of Distinct
Conditional ~Branches using Multidimensional Condition
Registerss”; An IP.com Prior Art Database Technical Disclosure;
http://iip.com/TPCOM/000214881; Feb. 8, 2012. 5 pgs.

Mengjie Mao et al., “Distributed Control Independence for Compos-
able Multi-processors,” icis, pp. 124-129, 2012 IEEE/ACIS 11th
International Conference on Computer and Information Science,
2012.

* cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 7 US 9,229,725 B2

_\ FIG. 1

“h

Client / \ Client / \ Client
\ 110 110 / 110 /
\T/ Aﬁ \T/
- ‘ .,

Q Network 102)

Server 106
Server 104

- L Safe conditional
operation system
108 116

U.S. Patent Jan. 5,2016 Sheet 2 of 7 US 9,229,725 B2

FIG. 2

STORAGE DEVICES 218
PROCESSOR PERSISTENT
UNIT ”E;‘ng“" STORAGE
204 208
[A A
/]_]
¥ 4
y Y -
 J Y h 4
COMMUNICATIONS INPUT/OUTPUT
210 212
DATA PROCESSING SYSTEM 200
f
COMPUTER
READABLE STORAGE mﬂ&’;ﬁm
DEVICE 224 MEDIA 228
PROGRAM CODE PROGRAM CODE
218 __ 218 —
Safe condiional
COMPUTER READABLE MEDIA 220 °"°"’"°1 y 'e’y’“"'
COMPUTER PROGRAM PRODUCT
22

U.S. Patent Jan. 5,2016 Sheet 3 of 7 US 9,229,725 B2

FIG. 3

Enhanced compiler Data processing system 200
304

Source code

302
Code Code
transformer

analyzer oplimizer Instruction set

306 308 310

Compiler generated code 312

Transactional memory support 314

Safe conditional operation
system
116

U.S. Patent Jan. 5,2016 Sheet 4 of 7 US 9,229,725 B2

FIG. 4

Code snippet

400
406
408 410
TRANSACTION_BEGIN D
BRANCH Label_Recovery ## branch to Label_Recovery if TRANSACTION_BEGIN fails {
COMPARE Rptr, 0 #Ht sets condition code S~ 402
LOAD_ON_COND Rt, NE, O(Rptr) ## Loads value at storage location 0(Rptr) into Rt if is not true (
TRANSACTION_END ;
412 s
\,414
/‘ 416
Label_Recovery: —
COMPARE Rptr, 0 t |
BRANCH NE, Label ## Branch is poorly predicted :;f 404
LOAD Rt, O(Rptr) ## Load *ptrinto Rt if Rptr 1= 0)
Label: —
\- 424

422 420 448

U.S. Patent Jan. 5,2016 Sheet 5 of 7 US 9,229,725 B2

FIG. 5

Lower Upper
bound bound
504 506
Speculation
HTM overhead @ost of code oplimization 509 workload
dominant dominant
508 510
- s

Optimization range 500

U.S. Patent Jan. 5,2016 Sheet 6 of 7 US 9,229,725 B2

FIG. 6

Start Process
< 602 > 600

Receive a portion
of source code
604

Analyze the
portion of source
code received

more code portion
analyzed for

606 ansformation exis
614
Yes
No
is a candidate for
transformation
Transform the Add branch to use
analyzed code an original code
portion to use portion on failure
conditional of transformed
Yes operations code
610 612

U.S. Patent Jan. 5,2016 Sheet 7 of 7 US 9,229,725 B2

FIG. 7

Start
702

Execute

transformed code transformed code portion

portions fails

704 No
l A
St condition 7‘20
708 Branch to
recovery routine
712
Perform
conditional
operation
708 pts
bra Use"ptr | |
716
Perform
original
operation
718

US 9,229,725 B2

1
SAFE CONDITIONAL-LOAD AND
CONDITIONAL-STORE OPERATIONS

FOREIGN PRIORITY

This application claims priority to Canadian Patent Appli-
cation No. 2831711, filed 31 Oct. 2013, and all the benefits
accruing therefrom under 35 U.S.C. §119, the contents of
which in its entirety are herein incorporated by reference

BACKGROUND

This disclosure relates generally to conditional-load and
conditional-store operations in a data processing system and,
more specifically, to performing safe conditional-load and
conditional-store operations in conditions when storage
access cannot be proven safe in the data processing system.

Conditional operations in the form of LOAD_ON_COND
and STORE_ON_COND operations typically provide a sig-
nificant performance advantage for data-driven branches that
are difficult for branch predictors of program code compilers
to predict reliably. In some instances, LOAD_ON_COND
and STORE_ON_COND operations can provide fairly dra-
matic improvements to the performance of a program because
penalties[Jassociated with mispredicted branches are
removed.

For example, using the following code snippet representa-
tive of a common code pattern for a LOAD_ON_COND
operation of:

x=0;

if (a>10) ## data-driven and poorly

predicted

{

X = *ptr;

¥

a typical implementation of the code snippet is:

LOAD_IMM Rx,0 ## x=0
COMPARE Ra, 10 ## Cond <= (Ra > 10)
BRANCH GT, Label ## Branch is poorly
predicted
LOAD Rx, O(Rptr) ## Load *ptr into X
Label:

The typical implementation can be further transformed into a
reduced form of:

LOAD_IMM Rx, 0 # x=0
COMPARE Ra, 100 #H0)
LOAD_ON_COND Rx, GT, O(Rptr) ## Load *ptr into X if Ra
>10

The transformation thereby avoids the branch prediction
through predication of the assignment of *ptr to x.

There is however an important limitation to the use of the
transformation. The LOAD_ON_COND can only be used
safely in situations in which the source of the load is proven to
not cause an access violation independently of an outcome of
the conditional operation. Implementations of LOAD_ON_
COND typically perform the load operation implicitly inde-
pendent of the respective condition and, accordingly, cause an
access violation even when the respective condition for the
load is false. For example, in the following implementation:

10

15

20

25

30

35

40

45

50

55

60

65

LOAD_ IMM R, 1
COMPARE Rptr, NULL
LOAD_ON_COND Rt NE, O(Rptr)

sets condition code[]
Loads value at storage
location O(Rptr) into Rt
condition code NE

an access violation will occur on systems where page 0 is not
readable when Rptr is NULL.

For a Load-on-Condition transformation to work correctly,
a compiler must therefore have sufficient contextual informa-
tion about *ptr to prove that the source of the load will not
cause an illegal access exception independently of whether
the respective condition for the load is true or false.

In a similar manner a Store-on-Condition can only be used
safely in situations in which a location into which a storing
operation is performed does not cause an access violation. For
example, using the following implementation:

MOVE O(array),H*0’
COMPARE Ra, 10
STORE_ON_COND Rx, GT, O(array)

When the address of the array variable is invalid, an access
violation will occur on systems using the example implemen-
tation.

Some previous attempted solutions use hardware transac-
tion memory, as a mechanism to detect bad access to the
physical memory. In another example of previous attempted
solutions, a technique in which speculative elimination of
null checks in regions is used. However, the technique is only
useful in the presence of a virtual memory subsystem, such as
used in an implementation of a Java virtual machine to detect
null references. In another previous attempted solution, new
hardware logic is utilized to improve branch prediction.

SUMMARY

One embodiment is a computer-implemented method for
safe conditional operation when storage access cannot be
proven safe. The method includes receiving a portion of
source code for a transaction by an enhanced compiler and.
The portion of source code received is analyzed, by the
enhanced compiler, to determine whether the portion of
source code is a candidate for transformation. Responsive to
a determination that the portion of source code analyzed by
the enhanced compiler is a candidate for transformation, the
portion of the source code analyzed is transformed, by a
computer processor, to use a conditional operation in a first
portion of the transformed code. The conditional operation
uses hardware transaction memory to invoke retry operations
within hardware. A branch is added, directed to an original
code portion, in a second portion of transformed code, where
the branch is a recovery portion containing the original code
portion.

Another embodiment is a computer program product for
safe conditional operation when storage access cannot be
proven safe. The computer program product includes a com-
puter readable storage medium having program instructions
embodied therewith. The program instructions are executable
by a computer processor to cause the computer processor to
perform a method. The method includes receiving a portion of
source code for a transaction by an enhanced compiler and.
The portion of source code received is analyzed, by the
enhanced compiler, to determine whether the portion of
source code is a candidate for transformation. Responsive to

US 9,229,725 B2

3

a determination that the portion of source code analyzed by
the enhanced compiler is a candidate for transformation, the
portion of the source code analyzed is transformed to use a
conditional operation in a first portion of the transformed
code. The conditional operation uses hardware transaction
memory to invoke retry operations within hardware. A branch
is added, directed to an original code portion, in a second
portion of transformed code, where the branch is a recovery
portion containing the original code portion.

Yet another embodiment is an apparatus for safe condi-
tional operation when storage access cannot be proven safe.
The apparatus includes a communications fabric; a memory
connected to the communications fabric, where the memory
contains computer executable program code; and a processor
unit connected to the communications fabric, where the pro-
cessor unit executes the computer executable program code to
perform a method. The method includes receiving a portion of
source code for a transaction by an enhanced compiler and.
Further according to the method, the portion of source code
received is analyzed, by the enhanced compiler, to determine
whether the portion of source code is a candidate for trans-
formation. Responsive to a determination that the portion of
source code analyzed by the enhanced compiler is a candidate
for transformation, the portion of the source code analyzed is
transformed to use a conditional operation in a first portion of
the transformed code. The conditional operation uses hard-
ware transaction memory to invoke retry operations within
hardware. A branch is added, directed to an original code
portion, in a second portion of transformed code, where the
branch is a recovery portion containing the original code
portion.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 is a block diagram of a network data processing
system, according to some embodiments of the disclosure;

FIG. 2 is a block diagram of a data processing system,
according to some embodiments of the disclosure;

FIG. 3 is a block diagram of a safe conditional operation
system, according to some embodiments of the disclosure;

FIG. 4 is a code snippet representation of transaction
including a conditional operation, according to some embodi-
ments of the disclosure;

FIG. 5 is a representation of an optimization range for use
of a conditional, according to some embodiments of the dis-
closure;

FIG. 6 is a flowchart of a process of generating a safe
conditional operation code portion, according to some
embodiments of the disclosure; and

FIG. 7 is a flowchart of a process using a safe conditional
operation code portion, according to some embodiments of
the disclosure.

DETAILED DESCRIPTION

Although an illustrative implementation of one or more
embodiments is provided below, the disclosed systems and/or

30

35

40

45

65

4

methods may be implemented using any number of tech-
niques. This disclosure should in no way be limited to the
illustrative implementations, drawings, and techniques illus-
trated below, including the exemplary designs and implemen-
tations illustrated and described herein, but may be modified
within the scope of the appended claims along with their full
scope of equivalents.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module,” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer-readable data
storage devices may be utilized. A computer-readable data
storage device may be, for example, but not limited to, an
electronic, magnetic, optical, or semiconductor system, appa-
ratus, or device, or any suitable combination of the foregoing,
but does not encompass propagation media. More specific
examples (a non-exhaustive list) of the computer-readable
data storage devices would include the following: a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), a por-
table compact disc read-only memory (CDROM), an optical
storage device, or a magnetic storage device or any suitable
combination of the foregoing, but does not encompass propa-
gation media. In the context of this document, a computer-
readable data storage device may be any tangible device that
can store a program for use by or in connection with an
instruction execution system, apparatus, or device.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java®,
Smalltalk, C++, or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. Java and all Java-based
trademarks and logos are trademarks of Oracle Corporation,
and/or its affiliates, in the United States, other countries or
both. The program code may execute entirely on the user’s
computer, partly on the user’s computer, as a stand-alone
software package, partly on the user’s computer and partly on
a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of net-
work, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present disclosure are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus, (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions.

These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus

US 9,229,725 B2

5

to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable data storage device that can direct a
computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer readable data storage device produce
an article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer-implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

With reference now to the figures and, in particular, with
reference to FIGS. 1-2, exemplary diagrams of data process-
ing environments are provided in which illustrative embodi-
ments may be implemented. It should be appreciated that
FIGS. 1-2 are only illustrative and are not intended to assert or
imply any limitation with regard to the environments in which
different embodiments may be implemented. Many modifi-
cations to the depicted environments may be made.

FIG. 1 shows a pictorial representation of a network data
processing system 100 in which illustrative embodiments
may be implemented. Network data processing system 100 is
anetwork of computers in which the illustrative embodiments
may be implemented. Network data processing system 100
contains network 102, which is the medium used to provide
communications links between various devices and comput-
ers connected together within network data processing sys-
tem 100. Network 102 may include connections, such as
wired, wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 connect
to network 102 along with storage unit 108. In addition,
clients 110, 112, and 114 connect to network 102. Clients
110, 112, and 114 may be, for example, personal computers
or network computers. In the depicted example, server 104
provides data, such as boot files, operating system images,
and applications to clients 110, 112, and 114 including safe
conditional operation system 116. Clients 110, 112, and 114
are clients to server 104 in this example. Network data pro-
cessing system 100 may include additional servers, clients,
and other devices not shown. Safe conditional operation sys-
tem 116 is a representative embodiment of the disclosure
providing a capability to perform safe conditional-load and
conditional-store operations in conditions when storage
access cannot be proven safe in network data processing
system 100 using server 104.

In the depicted example, network data processing system
100 is the Internet, with network 102 representing a world-
wide collection of networks and gateways that use the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) suite of
protocols to communicate with one another. At the heart of
the Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of
thousands of commercial, governmental, educational and
other computer systems that route data and messages. Of
course, network data processing system 100 also may be
implemented as a number of different types of networks, such

10

15

20

25

30

35

40

45

50

55

60

6

as for example, an intranet, a local area network (LAN), or a
wide area network (WAN). FIG. 1 is intended as an example,
and not as an architectural limitation for the different illus-
trative embodiments.

With reference to FIG. 2, a block diagram of an exemplary
data processing system operable for various embodiments of
the disclosure is presented. In this illustrative example, data
processing system 200 includes communications fabric 202,
which provides communications between processor unit 204,
memory 206, persistent storage 208, communications unit
210, input/output (I/O) unit 212, and display 214.

Processor unit 204 serves to execute instructions for soft-
ware that may be loaded into memory 206. Processor unit 204
may be a set of one or more processors or may be a multi-
processor core, depending on the particular implementation.
Further, processor unit 204 may be implemented using one or
more heterogeneous processor systems in which a main pro-
cessor is present with secondary processors on a single chip.
As another illustrative example, processor unit 204 may be a
symmetric multi-processor system containing multiple pro-
cessors of the same type.

Memory 206 and persistent storage 208 are examples of
storage devices 216. A storage device is any piece of hardware
that is capable of storing information, such as, for example
without limitation, data, program code in functional form,
and/or other suitable information either on a temporary basis
and/or a permanent basis. Memory 206, in these examples,
may be, for example, a random access memory or any other
suitable volatile or non-volatile storage device. Persistent
storage 208 may take various forms depending on the par-
ticular implementation. For example, persistent storage 208
may contain one or more components or devices. For
example, persistent storage 208 may be a hard drive, a flash
memory, a rewritable optical disk, a rewritable magnetic tape,
or some combination of the above. The media used by per-
sistent storage 208 also may be removable. For example, a
removable hard drive may be used for persistent storage 208.

Communications unit 210, in these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either or both physi-
cal and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing
system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard, a mouse,
and/or some other suitable input device. Further, input/output
unit 212 may send output to a printer. Display 214 provides a
mechanism to display information to a user.

Instructions for the operating system, applications, and/or
programs may be located in storage devices 216, which are in
communication with processor unit 204 through communi-
cations fabric 202. In these illustrative examples, the instruc-
tions are in a functional form on persistent storage 208. These
instructions may be loaded into memory 206 for execution by
processor unit 204. The processes of the different embodi-
ments may be performed by processor unit 204 using com-
puter-implemented instructions, which may be located in a
memory, such as memory 206. The computer-implemented
instructions also contain instructions comprising safe condi-
tional operation system 116 to be loaded into memory 206 for
execution by processor unit 204.

These instructions are referred to as program code, com-
puter usable program code, or computer readable program
code that may be read and executed by a processor in proces-
sor unit 204. The program code in the different embodiments

US 9,229,725 B2

7

may be embodied on different physical or tangible computer
readable storage media, such as memory 206 or persistent
storage 208 of storage devices 216.

Program code 218 is located in a functional form on com-
puter readable media 220 that is in a computer readable
medium form selectively removable and may be loaded onto
or transferred to data processing system 200 for execution by
processor unit 204. Program code 218 and computer readable
media 220 form computer program product 222 in these
examples. In one example, computer readable media 220 may
be in anon-transitory and tangible form, such as, for example,
an optical or magnetic disc that is inserted or placed into a
drive or other device that is part of persistent storage 208 for
transfer onto a storage device, such as a hard drive that is part
of persistent storage 208. In a tangible form, computer read-
able media 220 also may take the form of a persistent storage,
such as a hard drive, a thumb drive, or a flash memory that is
connected to data processing system 200. The tangible form
of computer readable media 220 is also referred to as com-
puter recordable storage media or a computer readable stor-
age device 224 in which data is non-transitory and therefore
does not form a propagation medium containing transitory
signals. In some instances, computer readable media 220 may
not be removable.

Alternatively, program code 218 may be transferred to data
processing system 200 from computer readable media 220
through a communications link to communications unit 210
and/or through a connection to input/output unit 212 as com-
puter readable signal media 226, which is in a transitory form.
The communications link and/or the connection may be
physical or wireless in the illustrative examples.

In some illustrative embodiments, program code 218 may
be downloaded over a network to persistent storage 208 from
another device or data processing system for use within data
processing system 200. For instance, program code stored in
a computer readable data storage device in a server data
processing system may be downloaded over a network from
the server to data processing system 200. The data processing
system providing program code 218 may be a server com-
puter, a client computer, or some other device capable of
storing and transmitting program code 218. In the current
example, program code 218 contains safe conditional opera-
tion system 116 of FIG. 1.

Using data processing system 200 of FIG. 2 as an example,
a computer-implemented process for safe conditional opera-
tion when storage access cannot be proven safe is presented.
Processor unit 204 receives a portion of source code for a
transaction and analyzes the portion of source code received,
using an enhanced compiler to determine whether the portion
of source code analyzed by the enhanced compiler is a can-
didate for transformation. Responsive to a determination that
the portion of source code analyzed is a candidate for trans-
formation, the portion of source code analyzed is transformed
by processor 204 using the enhanced compiler to use a con-
ditional operation in a first portion of transformed code. A
respective conditional operation uses hardware transaction
memory to invoke retry operations within hardware, and a
branch is added, directed to an original code portion, in a
second portion of transformed code. The code ofthe branch is
a recovery portion containing the original code portion.

Embodiments of the disclosure accordingly provide a
capability to remove inhibitors to generate branch-less code.
When using embodiments of the disclosure, usage of either of
a LOAD_ON_COND or a STORE_ON_COND operation is
no longer inhibited by a possibility that the conditional load or
conditional store operation may cause an invalid access.
Overhead associated with determining usage of these condi-

10

15

20

25

30

35

40

45

50

55

60

65

8

tional operations is eliminated, because embodiments of the
disclosure provide a correct result. Embodiments of the dis-
closure use a hardware transaction memory capability of retry
on failure to provide the needed correctness and are appli-
cable to static compilers.

Prior attempted solutions in which speculative elimination
of'null checks in regions is successful only in the presence of
a Java Virtual Machine (JVM) virtual memory subsystem, to
detect null references and applicable to dynamic compilers,
do not solve an issue with programs heavily gated by the data
driven branch code.

Other attempted solutions focus on hardware with a
smaller footprint to reduce costs and generate less heat but do
not address the speculation with correctness issue. In con-
trast, embodiments of the disclosure may be provided as
program code of a software program to improve run-time
performance by avoiding instances of potential branch
misprediction, in locations of the code, where elimination of
the branch operation would risk data integrity of the program.

Embodiments of the disclosure provide a capability to
relax a requirement of checking a condition and ensuring the
conditional load/store operation is safe. The embodiments
accordingly use capabilities of hardware transaction memory
to enable more aggressive code optimization of the compiled
code. Embodiments of the disclosure therefore enable more
aggressive ways for the compiler to not generate data depen-
dent branches having a high probability of a misprediction. In
an example, use of an embodiment of the disclosure provides
added capability to enable speculative code motion. Cost of
using the hardware transaction memory is compared to sav-
ings from allowing speculation to determine whether a net
result of using the hardware transaction memory provides a
benefit. Embodiments of the disclosure may accordingly be
used on any architecture that supports hardware transaction
memory.

Transactional memory accordingly provides a framework
by which illegal access exceptions can be caught safely. As
such, according to some embodiments, transactional memory
can be used to relax requirements on a compiler to prove the
source of either a LOAD_ON_COND or a STORE_ON_
COND will not cause an illegal exception, hence enabling a
more aggressive use of LOAD_ON_COND and STORE_
ON_COND operations to avoid a potential branch mispredic-
tion involving a data-dependent branch.

With reference to FIG. 3, a block diagram of a safe condi-
tional operation system, according to some embodiments, is
presented. The example depicts a view of a possible imple-
mentation structure of the safe conditional operation system
116 in the context of data processing system 200 of FIG. 2.

Safe conditional operation system 116, as depicted, may
contain more or less components than illustrated as a matter
of implementation without loss of function. For example,
components may be combined to reduce the number of sepa-
rate components without compromising function of the com-
ponents. The components provided support a compile time
and a run time mode of operation while leveraging the under-
lying support of the data processing upon which the compo-
nents depend. The components operate in an interdependent
context to deliver the set of capabilities disclosed.

Source code 302 represents the fundamental input to the
processing in the safe conditional operation system 116.
Source code 302 is programming instructions provided for
compilation by enhanced compiler 304. The source code as
provided includes recognized patterns of branching, which
means branching instructions are present in the segments or
portions of source code provided. The patterns within the
received code are detectable by processing using enhanced

US 9,229,725 B2

9

compiler 304 during one or more steps of compilation. The
segments or portions of source code represent program code,
which may be in a high level language, script language or
other form of program instruction.

Enhanced compiler 304 provides a capability to compile
source code 302 received as input. Enhanced compiler 304
performs functions typically associated with an optimizing
compiler, including capabilities of code analyzer 306 and
code transformer optimizer 308. Code analyzer 306 as a
component or function of enhanced compiler 304 provides a
capability of detecting one or more predetermined patterns of
branching, and of representing branching instructions present
in one or more segments or portions of source code provided.

In response to detection of one or more predetermined
patterns of branching (or a conventional use of a conditional
operation) by code analyzer 306, a code segment containing
the branching operation detected is identified for further pro-
cessing. Code transformer optimizer 308 processes the iden-
tified code segment containing the branching operation
detected. Code transformer optimizer 308 performs a trans-
formation in which the identified code segment is modified to
enable more aggressive ways for the compiler to not generate
data dependent branches having a high probability of a
misprediction. In some embodiments, the transformation
occurs within the compiler optimizer engine of enhanced
compiler 304.

For example, the transformation may use transactional
memory to relax requirements on enhanced compiler 304, to
prove that the source of either a LOAD_ON_COND or a
STORE_ON_COND will not cause an illegal exception. This
may enable a more aggressive use of LOAD_ON_COND and
STORE_ON_COND operations to avoid a potential branch
misprediction involving a data-dependent branch in the iden-
tified code segment. The hardware transaction memory capa-
bility of retry on failure is used to provide correctness of a
resulting operation. The transformed code includes a branch-
out of a failing transaction when the transaction fails. The
branch-out is to a recovery code segment incorporating the
original branch code.

The combination of code analyzer 306 and code trans-
former optimizer 308 therefore identifies opportunities in the
parsed source code to use hardware transaction memory in
combination with a branch recovery segment using the origi-
nal branching code. When the conditional operation uses the
hardware transaction memory of the transformed segment of
code, a potential branch misprediction involving a data-de-
pendent branch in the identified code segment is avoided.

Compiler generated code 312 provides a capability to
determine whether execution flow and output of the executed
code is as expected. For example, and not by way of limita-
tion, determining whether a transaction including trans-
formed code portion will fail.

Instruction set 310 provides a capability for programs, such
as those provided as input in source code 302, to use instruc-
tions specifically of conditional operations including a
LOAD_ON_COND instruction or a STORE_ON_COND
instruction.

Hardware transaction memory capabilities are provided
using transactional memory support 314. In some embodi-
ments, hardware transaction memory is provided as a system
service or a platform service. The hardware transaction
memory support includes a capability of retry on failure with-
out programmatic intervention.

With reference to FIG. 4, a code snippet representation of
transaction, including a conditional operation as used in vari-
ous embodiments ofthe disclosure, is presented. The example
of code snippet 400 depicts a view of a possible implemen-

10

15

20

25

30

35

40

45

50

55

60

65

10

tation of a conditional operation within a transaction and a
recovery branch as used with safe conditional operation sys-
tem 116 of FIG. 3.

Statements 402 represent a code segment of a transaction
comprising a set of instructions, including a branch to a
particular recovery code segment and a conditional operation.
Statements 404 represent a code segment of the original
branching implementation of the code. Statements 402 and
404 represent the result of a code transformation of the origi-
nal branching implementation of the code, using a combina-
tion of code analyzer 306 and code transformer 308 of FIG. 3.

Statement 406 identifies the start of the code portion defin-
ing the transaction and is bounded by a corresponding state-
ment 414 indicating an end of the defined transaction.

Statement 408 represents a directed branch-out of the
transaction routine to a particular recovery segment of code
identified as Label_Recovery. The associated comment indi-
cates the branch is to be taken when the identified transaction
fails. The recovery path can then execute the original branch-
ing implementation of the code.

Statement 410 specifies a particular condition code is to be
set, which is used in a subsequent conditional operation.
Statement 412 is a conditional operation. Statement 412 indi-
cates that a load operation uses a value at a storage location
identified by O(Rptr) into another storage location of Rt, if the
condition tested is not true.

EitheraLOAD_ON_COND instructionora STORE_ON_
COND instruction can now be used speculatively inside the
defined transaction. The recovery path can execute the origi-
nal branching implementation of the code.

Statement 416 specifies Label_Recovery: corresponding
with the directed branch out of the transaction routine indi-
cated in statement 408. Statement 418 is the same as state-
ment 410, which specifies the particular condition code to be
set, which in this instance is used in a subsequent uncondi-
tional operation.

Statement 420 specifies a branch instruction as originally
provided. The associated comments indicate this instance of
a branch is poorly predicted.

Statement 422 specifies an unconditional operation in the
form of a LOAD instruction. As indicated in the associated
comment, the unconditional load instruction causes the load-
ing of *ptr into the location Rt if the value of Rptr is not equal
to zero. A variable that stores a reference to another variable
is called a pointer, and a pointer is used to “point to” a
particular variable whose reference is stored. Using a pointer
enables direct access to the value stored in the variable, which
is pointed to (i.e., referenced by) the particular pointer. To
accomplish this, the identifier of the pointer is preceded with
an asterisk (*), which acts as a dereference operator. The *ptr
is literally translated as “value pointed by”.

Statement 424 specifies a target of the original branch
instruction specified in statement 420.

With reference to FIG. 5, a representation of an optimiza-
tion range for use of a conditional operation, as used in
various embodiments of the disclosure, is presented. The
example of optimization range 500 depicts scope of a possible
implementation of a conditional operation within a transac-
tion and a recovery branch as used with safe conditional
operation system 116 of FIG. 3.

Optimization range 500 depicts scope of a possible imple-
mentation of a conditional operation in which the cost of
using the hardware transaction memory is compared to sav-
ings from allowing speculation to determine whether a net
result of using the hardware transaction memory provides a
benefit. Cost of code optimization 502 represents a combina-
tion of using hardware transaction memory, which includes

US 9,229,725 B2

11

an inherent overhead, and use of speculation inherent in the
misprediction of branch operations.

Cost of code optimization 502 is bounded by lower bound
504 and upper bound 506. Lower bound 504 reflects a point at
which hardware transaction memory (HTM) overhead domi-
nant 508 represents a significant portion of the cost of code
optimization. For example, using hardware transaction
memory incurs processing overhead, which is too costly in
view of any benefit received. This may occur when a branch
is too unpredictable or when a branch operation is known to
wait too long when using a conditional operation and is a
candidate for a code redesign. Speculation dominant work-
load 510 represents a situation when speculation becomes
less desirable due to the uncertain nature of the branching
code. Statistics from code traces of identified code segments
can be used to provide quantitative analysis of branching
activity. From the analysis, optimization opportunities may
be further filtered to determine points at which hardware
transaction memory or speculation may or may not be ben-
eficial, and therefore identify which approach to use.

With reference to FIG. 6 a flowchart of a method of gen-
erating a safe conditional operation code portion, as used in
various embodiments of the disclosure, is presented. Method
600 is an example of using the safe conditional operation
system of FIG. 3.

Method 600 begins (block 602) and receives a portion of
source code. The source code is representative of a program
for which an optimization is desired and which contains
branch operations. The branching operations will be exam-
ined for potential use of conditional operations and a recovery
code segment.

Method 600 analyzes the portion of source code received.
Analysis is conducted typically during a parsing phase to
identify predetermined patterns of branching (or a conven-
tional use of a conditional operation). The analysis may be
performed by a component such as code analyzer 306 of F1G.
3 or other component suited to parse and examine source code
for particular sequences of code or operational instructions or
combinations thereof.

Method 600 determines whether the code portion analyzed
is a candidate for transformation (block 608). A determina-
tion is made as to whether the analyzed portion contains a
predetermined pattern of branching or a conventional use ofa
conditional operation as a result of the analysis. A determi-
nation can be made using a simple comparison of a statement
in the portion of source code with that of a particular known
pattern including a BRANCH instruction.

In response to a determination that the code portion ana-
lyzed is not a candidate for transformation, method 600 deter-
mines whether more code portions analyzed for transforma-
tion exist (block 614). In response to a determination that no
more code portions analyzed for transformation exist, method
600 terminates (block 616).

Returning to block 608, in response to a determination that
the code portion analyzed is a candidate for transformation,
method 600 transforms the analyzed code portion to use
conditional operations. The code transformation method
retains the condition setting code of the original code portion
and replaces the unconditional operation (such as a load
operation or a store operation) with a corresponding condi-
tional operation. The corresponding conditional operation
uses hardware transaction memory to invoke retry operations
within the hardware.

Method 600 adds branching to use the original code por-
tion upon failure of the transformed code (block 612). The
branch is from the segment including the conditional opera-
tion code portion of the transformed code to a recovery seg-

20

25

30

40

45

50

12

ment including the original branching code. The original
branching code is a target upon failure of the conditional
operation of the transformed code.

Method 600 determines whether more code portions ana-
lyzed for transformation exist (block 614) as before. In
response to a determination that more code portions analyzed
for transformation exist, method 600 returns to perform block
610 as before.

With reference to FIG. 7 a flowchart of a method using a
safe conditional operation code portion as used in various
embodiments of the disclosure is presented. Method 700 is an
example of using a safe conditional operation code portion
generated using a method as in FIG. 6. Method 700 is repre-
sentative of an execution of the transformed code portions
generated using method 600 of FIG. 6.

Method 700 begins (block 702) and executes transformed
code portions (block 704). The transformed code portions are
those segments including the conditional operation code por-
tion of the transformed code and the respective recovery
segment, including the original branching code associated
with the conditional operation code portion.

During execution of the transformed code portions,
method 700 sets a condition (block 706). Although setting of
the condition is also performed in the transformed code, the
condition is that of the original source code portion.

Method 700 processes the conditional operation code por-
tion of the transformed code to perform the specified condi-
tional operation (block 708). The specified conditional opera-
tion represents a first portion of the transformed code,
whereas the respective recovery segment including the origi-
nal branching code associated with the conditional operation
code portion represents a second portion of the transformed
code.

A determination is made as to whether a transaction with
the transformed code portion fails (block 710). Responsive to
a determination is made the transaction with the transformed
code portion does not fail, method 700 terminates (block
720).

Responsive to a determination the transaction with the
transformed code portion does fail; method 700 branches to a
recovery routine (block 712). The recovery routine is speci-
fied within the first portion of the transformed code portion
and enables a graceful exit from the failing conditional opera-
tion of the first portion, by using the original branching code
as a target upon failure of the conditional operation of the
transformed code.

Method 700 determines whether the branch is poorly pre-
dicted (block 714). Responsive to a determination that the
branch is poorly predicted, method 700 uses *ptr as an argu-
ment of the conditional operation (block 716) and terminates
thereafter (block 720). Responsive to a determination that the
branch is not poorly predicted, method 700 branches out of
the recovery routine to a target routine as specified in the
original branching code (block 718) and terminates thereafter
(block 720).

Thus is presented in an illustrative embodiment a com-
puter-implemented method for safe conditional operation
when storage access cannot be proven safe. The computer-
implemented method receives a portion of source code for a
transaction by an enhanced compiler and analyzes, by the
enhanced compiler, the portion of source code received. A
determination is made as to whether the portion of source
code analyzed by the enhanced compiler is a candidate for
transformation.

Responsive to a determination the portion of source code
analyzed by the enhanced compiler is a candidate for trans-
formation, the computer-implemented method transforms the

US 9,229,725 B2

13

portion of source code analyzed to use a conditional operation
in a first portion of transformed code and adds a branch, to an
original code portion, in a second portion of transformed
code, where the branch is a recovery portion containing the
original code portion. The recovery portion providing back-
ward compatibility while enabling use of the transaction
memory capabilities.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing a specified logical function. It
should also be noted that, in some alternative implementa-
tions, the functions noted in the block might occur out of the
order noted in the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, and other software media that may be
recognized by one skilled in the art.

It is important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer read-
able data storage device having computer executable instruc-
tions stored thereon in a variety of forms. Examples of com-
puter readable data storage devices include recordable-type
media, such as a floppy disk, a hard disk drive, a RAM,
CD-ROMs, and DVD-ROMs. The computer executable
instructions may take the form of coded formats that are
decoded for actual use in a particular data processing system.

A data processing system suitable for storing and/or
executing computer executable instructions comprising pro-
gram code will include one or more processors coupled
directly or indirectly to memory elements through a system
bus. The memory elements can include local memory

20

30

35

40

45

65

14

employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems, and Ethernet cards are just a few of the cur-
rently available types of network adapters.

What is claimed is:

1. A computer-implemented method for safe conditional
operation when storage access cannot be proven safe, the
computer-implemented method comprising:

receiving a portion of source code for a transaction by an

enhanced compiler;

analyzing, by the enhanced compiler, the portion of source

code received;

determining whether the portion of source code analyzed

by the enhanced compiler is a candidate for transforma-
tion;

responsive to a determination the portion of source code

analyzed by the enhanced compiler is a candidate for
transformation, transforming, by a computer processor,
the portion of the source code analyzed to use a condi-
tional operation in a first portion of the transformed
code, wherein the conditional operation uses hardware
transaction memory to invoke retry operations within
hardware;

wherein transforming the portion of the source code ana-

lyzed to use the conditional operation in the first portion
of the transformed code further comprises specifying a
recovery routine within the first portion of the trans-
formed code;

adding a branch, directed to an original code portion, in a

second portion of the transformed code, wherein the
branch is a recovery portion containing the original code
portion; and

executing a transaction comprising the first portion of the

transformed code and the second portion of the trans-
formed code.

2. The computer-implemented method of claim 1, further
comprising:

wherein the transaction comprises a branch to a recovery

routine for use when the conditional operation in the first
portion of the transformed code performed speculatively
inside the transaction fails; setting a condition code for
the conditional operation;

loading a value at a first storage location into a second

storage location when a specified condition in the con-
ditional operation is not true using the conditional opera-
tion;

branching out of the transaction to the recovery routine

when the transaction fails; determining whether the
branch is poorly predicted;

responsive to a determination the branch is not poorly

predicted, performing the original code portion; and
responsive to a determination the branch is poorly pre-
dicted, branching out of the recovery routine.

3. The computer-implemented method of claim 2, wherein
setting the condition code for the conditional operation fur-
ther comprises:

US 9,229,725 B2

15

retaining a condition setting code of the original source

code portion.

4. The computer-implemented method of claim 2, wherein,
responsive to a determination the branch is poorly predicted,
branching out of the recovery routine further comprises:

using a pointer as an argument of the conditional operation.

5. The computer-implemented method of claim 1, further
comprising:

using the original code portion as a target of the branch

upon failure of the conditional operation of the trans-
formed code, wherein the recovery portion enables an
exit from a failing conditional operation of the first por-
tion.

6. The computer-implemented method of claim 1, wherein
transforming the portion of source code analyzed further
comprises:

transforming code in a first portion, comprising a condi-

tional operation code portion of the transformed code
replacing an unconditional operation; and

transforming code in a second portion, comprising a

respective recovery segment including original branch-
ing code associated with the conditional operation code
portion.

7. A computer program product for safe conditional opera-
tion when storage access cannot be proven safe, the computer
program product comprising a computer readable storage
medium having program instructions embodied therewith,
the program instructions executable by a computer processor
to cause the computer processor to perform a method com-
prising:

receiving a portion of source code for a transaction by an

enhanced compiler;

analyzing, by the enhanced compiler, the portion of source

code received;

determining whether the portion of source code analyzed

by the enhanced compiler is a candidate for transforma-
tion;

responsive to a determination the portion of source code

analyzed by the enhanced compiler is a candidate for
transformation, transforming the portion of the source
code analyzed to use a conditional operation in a first
portion of the transformed code, wherein the conditional
operation uses hardware transaction memory to invoke
retry operations within hardware;

wherein transforming the portion of the source code ana-

lyzed to use the conditional operation in the first portion
of the transformed code further comprises specifying a
recovery routine within the first portion of the trans-
formed code;

adding a branch, directed to an original code portion, in a

second portion of the transformed code, wherein the
branch is a recovery portion containing the original code
portion; and

executing a transaction comprising the first portion of the

transformed code and the second portion of the trans-
formed code.

8. The computer program product of claim 7, the method
further comprising:

wherein the transaction comprises a branch to a recovery

routine for use when the conditional operation in the first
portion of the transformed code performed speculatively
inside the transaction fails;

setting a condition code for the conditional operation;

loading a value at a first storage location into a second

storage location when a specified condition in the con-
ditional operation is not true using the conditional opera-
tion;

10

15

20

25

35

40

45

50

55

60

16

branching out of the transaction to the recovery routine
when the transaction fails; determining whether the
branch is poorly predicted; responsive to a determina-
tion the branch is not poorly predicted, performing the
original code portion; and

responsive to a determination the branch is poorly pre-
dicted, branching out of the recovery routine.

9. The computer program product of claim 8, wherein
setting the condition code for the conditional operation fur-
ther comprises:

retaining a condition setting code of the original source
code portion.

10. The computer program product of claim 8, wherein,
responsive to a determination the branch is poorly predicted,
branching out of the recovery routine further comprises:

using a pointer as an argument of the conditional operation.

11. The computer program product of claim 7, the method
further comprising:

using the original code portion as a target of the branch
upon failure of the conditional operation of the trans-
formed code, wherein the recovery portion enables an
exit from a failing conditional operation of the first por-
tion.

12. The computer program product of claim 7, wherein
transforming the portion of the source code analyzed further
comprises:

transforming code in a first portion, comprising a condi-
tional operation code portion of the transformed code
replacing an unconditional operation; and

transforming code in a second portion, comprising a
respective recovery segment including original branch-
ing code associated with the conditional operation code
portion.

13. An apparatus for safe conditional operation when stor-

age access cannot be proven safe, the apparatus comprising:

a communications fabric;

a memory connected to the communications fabric,
wherein the memory contains computer executable pro-
gram code;

a processor unit connected to the communications fabric,
wherein the processor unit executes the computer
executable program code to direct the apparatus to:

receive a portion of source code for a transaction by an
enhanced compiler;

analyze, by the enhanced compiler, the portion of source
code received;

determine whether the portion of source code analyzed by
the enhanced compiler is a candidate for transformation;

responsive to a determination the portion of source code
analyzed by the enhanced compiler is a candidate for
transformation, transform the portion of the source code
analyzed to use a conditional operation in a first portion
of the transformed code, wherein the conditional opera-
tion uses hardware transaction memory to invoke retry
operations within hardware;

wherein, to transform the portion of the source code ana-
lyzed to use the conditional operation in the first portion
of the transformed code, the processor unit executes the
computer executable program code to further direct the
apparatus to specify a recovery routine within the first
portion of the transformed code;

add a branch, directed to an original code portion, in a
second portion of the transformed code, wherein the
branch is a recovery portion containing the original code
portion; and

US 9,229,725 B2

17

execute a transaction comprising the first portion of the
transformed code and the second portion of the trans-
formed code.
14. The apparatus of claim 13, wherein the processor unit
executes the computer executable program code to further
direct the apparatus to:
wherein the transaction comprises a branch to a recovery
routine for use when the conditional operation in the first
portion of the transformed code performed speculatively
inside the transaction fails; set a condition code for the
conditional operation;
load a value at a first storage location into a second storage
location when a specified condition in the conditional
operation is not true using the conditional operation;

branch out of the transaction to the recovery routine when
the transaction fails; determine whether the branch is
poorly predicted; responsive to a determination the
branch is not poorly predicted, perform the original code
portion; and

responsive to a determination the branch is poorly pre-

dicted, branch out of the recovery routine.

10

15

18

15. The apparatus of claim 14, wherein, to set the condition
code for the conditional operation, the processor unit
executes the computer executable program code to further
direct the apparatus to:

retain a condition setting code of the original source code

portion.

16. The apparatus of claim 14, wherein, to branch out of the
recovery routine responsive to a determination the branch is
poorly predicted, the processor unit executes the computer
executable program code to further direct the apparatus to:

use a pointer as an argument of the conditional operation.

17. The apparatus of claim 13, wherein the processor unit
executes the computer executable program code to further
direct the apparatus to:

use the original code portion as a target of the branch upon

failure of the conditional operation of the transformed
code, wherein the recovery portion enables an exit from
a failing conditional operation of the first portion.

#* #* #* #* #*

